
Dynamically-Generated Image Mosaics

by

J. An

Supervisor: Karan Singh

April 2010

Dynamically-Generated Image Mosaics

by

J. An

Supervisor: Karan Singh

April 2010

Abstract
The artistic process of decomposing an image into a collection of tiles is analysed. The
process of replacing each tile with another image from a database is automated, such that
the resulting mosaic of images resembles the original image from a distance. The concept
of an image mosaic is not new, but few examples exist of wholly automated processes of
constructing image mosaics where the image replacements are not corrected or otherwise
tweaked.

A number of methods for the various components in such a mosaic generator are
considered. Although the way of characterizing images and tiles is simplistic, a random
method is proposed to mitigate the visual periodicity that becomes apparent in regular tiling
across homogeneous regions of the original image.

Lastly, a web platform and framework is proposed to house this image generator.

i

Acknowledgements
It is a pleasure to give acknowledgement and thank those who made this thesis possible.

First and foremost, I would like the thank my thesis supervisor for proposing this topic and
setting me in the direction to complete my research.

I would also like to thank my family, friends, and colleagues for their unending moral
support as well as editorial support.

Lastly, I would like to thank the many open source communities, who's work made this
thesis possible. Specifically, I would like to thank the Drupal community who continues to
produce the enterprise-quality content management system, Drupal, on which this thesis is
heavily based as a development framework.

ii

Table of Contents
1.Introduction..1

1.1Objective..1
2.Related Work..2
3.Problem Specification..3
4.Application Framework...4

4.1Development Philosophy...4
4.2Programming Language Prevalence..4
4.3Analysis of Programming Language and Framework...5
4.4Drupal Structure..6

5.Process Component Design..8
5.1Image Database...8
5.2Characterizing Images...9
5.3Comparing Characterizations..12
5.4Searching for Images...12
5.5Colour Correction Technique..13

6.Results 16
6.1Initial Results...16
6.2Algorithmic Improvements...18
6.3Implementation Improvements..19
6.4Final Results..19

7.Work Extensions..23
7.1Different Characterization Methods..23
7.2Implement the Standard Colour Difference Metric...23
7.3Vastly Increased Image Database..23

8.Conclusion..25
9.References..26
Appendix A.Mosaic Generator Code..28

iii

List of Figures
Figure 1: Visualization of equation 1..11
Figure 2: (a) is a mosaic without colour correction and (b) is one with colour correction

based on the source image (c). Colour correction enhances the recognition of
the original image and dulls the details within the individual image
replacements...15

Figure 3: The source image for the adjacent mosaics (figure 2 and 3).................................16
Figure 4: One of the first mosaics...16
Figure 5: The mosaic with colour corrected tiles..16
Figure 7: The mosaic is generated with smaller tiles and an expanded image database.......18
Figure 8: A pair of mosaics demonstrating the effects of reducing the tile size...................18
Figure 10: A 7300-tile mosaic...22
Figure 11: A 6700-tile mosaic...22
Figure 12: Average colour characterization does not capture colour dynamics within the

image region...23

iv

List of Equations
Equation 1: The 2nd-order non-linear equation used to analyse the relationship between

image and file size and processing time to characterize images........................10
Equation 2: Popular metrics for Euclidean space..12

v

List of Tables
Table 1: Listing of Flickr tags used to populate image database..18
Table 2: Benchmarking results measuring duration of the two characterization methods....19

vi

1. Introduction
The term mosaic first appeared in the English language in the 16th century, according to the
Oxford English Dictionary [1], describing a “process of creating pictures or decorative
patterns by cementing together small pieces of stone, glass, or other hard materials of
various colours.” Since then, the resulting work and any work analogous to the traditional
mosaic could also be referred to as a mosaic, itself. Artists who create (often traditionally)
mosaics sometimes call themselves mosaicists.

A mosaic is composed smaller pieces or tiles, traditionally made of something like stone,
rock or coloured glass. Much like how brush strokes collectively compose a painting, these
tiles compose a mosaic. When the artwork is viewed from up close, the individual smaller
elements (brush strokes or tiles) are visible; yet when viewed at a distance the collection of
strokes or tiles blend together to yield the overall picture.

Although [2] cites uses of the word photomosaic in the English language as early as 1920,
the first images tessellated by other images created at least in part by software didn't
emerge until the early 1990's according to [3] and [4].

1.1 Objective
This paper explores the use of software to generate image mosaics (referred to as just
mosaics from now on) both on-the-fly and entirely automatically. The various components
of a mosaic generator are described and the various implementations described. In this
paper, mosaics are created by tessellating a collection of small images (or thumbnails) or
tiles so that they suggest an overall image.

Even a brief Internet search across the topic of mosaics will retrieve commercially,
personally, and even politically motivated purposed for creating mosaics. The primary
purposes for the work described in this paper is both artistic and accessible in nature.

Tessellating tiles in a mosaic may eventually rival the artistic mosaics of current artists or it
may provide such artists with a new tool or method with which art and creativity may be
expressed. It also provides opportunities to juxtapose or contrast the various tiles from one
another or from the overall image, such as for creating advertisements and political or
popular messages.

Accessibility, especially to a non-technical user, is emphasized as users should not need to
know how the mosaic generator works to use it. With the proliferation of image capture
devices (e.g. digital cameras and DSLRs, webcams, camera-equip mobile devices,
scanners) and the vast repositories of public or private images, there is interest in creating
something new from these images.

This paper explores both the technical challenges of creating the generator and a software
framework to implement this generator for general use.

1

2. Related Work
The earliest known examples of traditional mosaics dates back to the second half of the 2nd

millenium BCE (1500 BCE–1000 BCE) according to [5]. Depending on the strict
definition, modern mosaics using images as tiles began to appear in the first half of the 20th

century. These mosaics and their manual methods of composition are not directly to this
paper.

Algorithms and software to either assist in generating or wholly generate mosaics began to
appear in the early 1990's. These early pioneering examples were constrained by the
comparatively limited computing power and small image databases available at the time.

It appears that the topic of mosaic generation has not garnered much academic attention,
but a number of commercial and personal projects are publicly available [6–11]. The
concept and innovation around creating mosaics has also been fettered by a trademark on
“Photomosaic” patent [12] on technology creating photomosaics both held in the US by [7]
who has asserted his patent against others [13–14]. The patent was applied in 1997 and
came into effect in 2000. As of February 16, 2010, a vast majority of the patent has been
invalidated on the grounds of prior art [14].

A seminal paper [15] describes a process for creating mosaics and explores various
algorithms in the various components of the process. It focuses on areas not covered in this
paper: on digital half-toning; it also relies heavily on colour correcting the tiles or
overlaying the original overall image translucently over the mosaic so that the mosaic is
more suggestive of the overall image. It appears the work in this paper is constrained by the
number of images to choose tiles from and may be constrained by the hardware of the time,
limiting the number of tiles in the mosaic and the size of the mosaic. It also indicates that
manual work in either preparing the images for tessellation or tweaking the resulting
mosaic occurs.

[16] explores more complicated methods of creating mosaics, using a greedy approach to
place larger tiles over homogeneous areas of the source image, and more descriptive ways
to describe both the source image tiles and its replacements. To this end, the paper focuses
on improving the quality of mosaic generation by easing the visual periodicity of regular
tiles with uneven tile rectangles and by more accurately describing tiles. The experiments
described in the paper were performed on an average computer with a 2.2 GHz CPU and 2
GB of RAM with the mosaics generated within a few minutes with several thousand tiles.

2

3. Problem Specification
Two processes are required for creating mosaics: one to build a database of images from
which to choose tiles, and one to accept a source image and generate a mosaic from it using
the database of images.

The second process of generating the mosaic has a few components. The source image is
first broken into tiles. Second, the tiles need to be somehow described or characterized.
These characterizations are thirdly compared against the characterizations of images in the
database. A good or best matching image is selected. Finally, the selected image replaces
the tile. By replacing all tiles with image matches, the mosaic is tessellated.

The first process in building the database is straight-forward. Images are fetched from a
source and formatted into the database. Some preprocessing work can be done here in
characterizing the images in advance and stored with the images. If the tile sizes are fixed
or somehow known in advance, thumbnails of appropriate size can also be cached with the
images so that the images need not be cropped or scaled when the mosaic in being
generated.

3

4. Application Framework
The specific framework to implement the two processes that will compose the mosaic
generator is crucial, as the selection will indicate the programming paradigm, general speed
of execution, and ease of development as the various frameworks and toolkits in the various
programming languages can differ greatly in what they offer and how they assist in the
development of software.

The choice of programming language is also key as specific language is closely link to the
programming paradigm or model and actual speed of execution (as opposed to time
complexity, which is often implementation-agnostic).

The focus is on speed of code execution, availability of software development kits (SDKs)
and libraries, platform independence, and ease of use.

4.1 Development Philosophy
The development process borrows from Agile software development or simply Agile. Agile
in its modern definition evolved in the 1990's and now many specific Agile methods exist
[19]. The development presented in this paper does not ascribe to any specific Agile
methodologies; rather the process borrows some principles from Agile, namely:

• Software is maintained in a functioning manner;

• Modifications to the code leaves it in a consistent and functioning manner;

• Progress is done in a short-term iterative cycle;

• Simplicity, code reuse, and leveraging open source code bases are emphasized;

• Requirements and specifications are expected to evolve as the work progresses; and

• Goals of the work are expected to change as the work progresses.

The focus of the philosophy is this. The aim of the work is to produce a reasonably
functional image mosaic generator as well as experiment with different ways to implement
the various components. Despite developing specific requirements and specifications,
understanding of the problem and the code will inevitably evolve over time and fulfilling
the aim may mean changing the development of the software.

4.2 Programming Language Prevalence
The selection of the development programming language and framework needs to be done
together as frameworks are built on their language foundations and the choice of a language
is heavily weighted on the collection of mature SDKs available in that language.

[20] collects data on the relative popularity of programming languages across a number of
sources. Its normalized comparison, across sources like Google Code, Ohloh, del.icio.us,
and Craigslist, show the top five most popular languages are in the descending order from

4

most popular: Java, C, C++, PHP, Javascript, with Java being just over twice as popular as
Javascript. On a separate metric, its normalized discussion comparison indicates the five
most discussed languages are in descending order: C++, C, Java, Python, and PHP.

[21] maintains an index updated monthly measuring the relative frequency of web searches
made with Turing complete programming language names, across a number of search
engines. Its top five ranked languages are in descending order: C, Java, C++, PHP, (Visual)
Basic.

The four languages that consistently rank high among these popularity indices are: C, C++,
Java, and PHP.

4.3 Analysis of Programming Language and Framework
Java is heavily object-oriented and its code is compiled into an intermediate language
called bytecode, which is a set of instructions that a Java Virtual Machine (JVM) can
interpret and execute. Because JVMs are available on many hardware and software
platforms, the same bytecode can be executed on many platforms interchangeably.

The Java Development Kit (JDK) is a large library covering various API. Image processing
is handled by Java Advanced Imaging (JAI), an extension application programming
interface (API).

C and C++ are both general purpose languages which are cross-platform only in that code
can be compiled in multiple platforms; yet, once the code is compiled into a binary image
stored as an executable, the binary can only execute on the specific operating system and
computer architecture for which it was built. Porting the same code to a different platform
is non-trivial, and can be a huge refactoring task depending on the code's purpose and the
platforms to and from which the code is being ported.

The C and C++ Standard Library provides a collection of common operations. The C++
library supports templates, generic containers and common algorithms, as part of the C++
ISO standard. The Boost C++ Libraries is a collection of some 80 peer-reviewed libraries,
one of which provides functionality around image processing.

PHP is a general-purpose scripting language designed initially for web development and the
dynamic creation of web pages. As a server-side scripting language, PHP is embedded in
HTML source documents and interpretted by a web server with a PHP processor extension.
As a server-side language, the code is compiled on the fly, as the document is being
requested by a client using a program like a web browser. Any client that can access the
PHP embedded document on the server may run the script regardless of its platform or
configuration. PHP is supported by the three major web servers [22]: Apache, Microsoft
IIS, and nginx, who collectively serve 85% of the market. (Google's private web server
accounts for an additional 6%.)

PHP's library is also extensive. The PHP Extension and Application Repository (PEAR)
further extends PHP's functionality through contributed PEAR packages. The GD Graphics
Library is well supported in PHP in dynamically manipulating images.

5

Drupal is a free and open source content management system written in PHP, that powers
both small and enterprise-sized websites [24], such as whitehouse.gov. It's standard release
or core is supplemented by a module extensible system and a vast collection of community
contributed modules that cover functionality like image processing and caching, and record
storage.

Comparing speed of code execution [23], C and C++ are very similar, whereas Java
executes about two times slower. PHP executes about two orders of magnitude slower than
C, C++, and Java.

PHP and Drupal 6 are chosen for this work despite its inherent speed drawbacks. When
storing and retrieving data, a MySQL database will be used, which will help mitigate the
performance issues when dealing with many images and their characterizations. PHP has a
large standard library of functions and Drupal will provide a general web framework that
will handle most operations right up to accessing images.

Because much of the input and output (I/O) and the graphical user interface (GUI) is
provided out of the box with some configuration by GUI, the setup and tear down of the
process is all handled without much coding.

Overall, the system implements a solution stack running Linux, Apache (web server),
MySQL (database), and PHP, collectively known as the LAMP stack, plus Drupal 6. The
entire stack sites on a publicly accessible virtual private server (VPS) provided by
Slicehost. The VPS specifications are:

• Quad-core, 64-bit CPU running at 2.2 GHz (two Dual-Core AMD Opteron
Processor 2214)

• RAID-10 disk storage

• Gigabit network backbone

• 256 MB of RAM

Slicehost sells its VPS based on how much RAM is dedicated to the VPS. The 256 MB
VPS is quite constrained in terms of memory.

The work is being hosted currently on mosaic.jamesan.ca.

4.4 Drupal Structure
The specific details of the Drupal implementation can be found in Appendix A. The
following is a discussion about the overall structure of this implementation of Drupal.

Drupal refers to each item of content (e.g. a web page, a news item, a blog post) as a node.
Nodes are assigned a content type (e.g. page, forum post) upon creation. Here, Drupal is
implemented with two content types: images and mosaics. An image node stores an image
to be used by the mosaic generator as both a candidate to replace a tile and the source
image for the generator, and its pre-computed characterization. A mosaic node stores the
resulting image mosaic produced by the mosaic generator.

6

On the home page, the user is presented with two listings: one of image nodes and one of
mosaic nodes. Clicking on a mosaic thumbnail brings up the mosaic node which just shows
a larger version of the mosaic that is click-able to a pop-up showing the mosaic in 100%
magnification. Clicking on an image thumbnail brings up a similar page with the addition
of a link that commences the tessellation process to generate a mosaic with the image as the
source.

The mosaic generator is written as a module of Drupal, leveraging the ways Drupal is
designed to be extended using its hook system. Drupal allows modules to hook into its
process in generating the requested web page at specific points in the execution. For
example, when the list of menus and menu items is being built, Drupal will allow modules
that implement the menu hook to add its own menus and menu items. When a form is being
constructed, when a node is being viewed, loaded, or saved, Drupal provides an opportunity
for modules to execute its own code. This is how Drupal's functionality is extended—for
example, how additional fields can be defined and implemented for specific content types.

The duration required to import many images into the database or generate mosaics with
many tiles will often far exceed the time allotted to a single PHP script execution, resulting
in a timeout. To work around this, Drupal provides a Batch API that allows code execution
over several page requests to avoid the PHP timeout and also display a progress indicator to
the user after each request in the batch is processed via Ajax (or DOM scripting, as some
have argued is more accurate a label). Across page requests, data is kept persistent by
storing the serialized form in the database prior to the end of one page request and
retrieving it in the next request. Because of the way Drupal stores the persistent variables
under a single row in the database, large data structures can severely hamper the speed of
processing done with the Batch API.

7

5. Process Component Design
The following is a breakdown of the various components of these two processes and
various ideas and methods to fulfil their requirements.

5.1 Image Database
Earlier work used a small database of images: a couple hundred. It became clear the
database needed to be vastly expanded to capture the variety of images and possible
colouration.

There exists huge banks and caches of images on the Internet that can be used to populate
the database. There are now many candidates such as Google Image Search, Wikimedia,
Flickr, Photobucket, and deviantART. These have collections in the order of millions or
billions (in the case of Google [17] and Flickr [18]) of images.

Flickr was chosen as it contains the most images and its API response can be returned in the
PHP serialized format. The Flickr API implements, among other request formats, the
Representational State Transfer (REST) architecture. The RESTful service is accessed by
sending an HTTP GET request to the Flickr REST Endpoint URI with the parameters
encoded in the query fragment of the URI. The relevant paramters are: the Flickr API
method, flickr.photos.search; a comma-delimited list of tags; the number of photos to return
in this call, up to 500; and the page number, if there are more photos than requested. For
example, to request for 500 images with the tag, “black and white,” on page 5 (that is,
images 2001 through to 2500), the REST Endpoint URI would be:

http://api.flickr.com/services/rest/
?api_key=5c0b0b7235116793a29e8bbd1f516f92
&method=flickr.photos.search
&tags=black+and+white
&format=php_serial
&per_page=500
&page=5

To populate the image database, the above method of searching for images on Flickr is used
as follows.

The user is presented with a form asking for two inputs: a comma-delimited list of tags to
search, and the number of images to retrieve per tag. Although Flickr can process all the
tags together in a single request, each term is isolated to guarantee images will be retrieved
across all tags.

An array of Flickr URI to images is first constructed. If more than 500 images per tag is
indicated, multiple requests to Flickr will need to be made for each tag. In either case, the
number of pages is first retrieved by making a request to Flickr with the tag and number of
results per page, dumping all the results, and returning just the number of pages available.

In the case of more than 500 images, 500 images are requested with a random page number
for each tag until less than 500 images are needed to fulfil the specified number of images
to be retrieved. At this point, this devolves to the case where less than or exactly 500
images are needed. Each set of results returns an array of image information that is

8

formatted into the Flickr URI that addresses the image. One last request is made to Flickr to
complete the array of image URI.

When retrieving images and even between unrelated requests to Flickr, the algorithm
should somehow avoid ever selecting the same page number. Tracking the page number is
not realistic, especially since the number of images per page may not always be 500 and
since the Flickr image database is constantly changing. A simple heuristic to avoid selecting
the same page number is to just select a random page at every request. This heuristic
becomes increasingly successful the more pages are available.

Tag # of Pages # of Images
landscape 6636 3.3 mil.
building 3840 1.9 mil.
portraits 1851 0.9 mil.
animals 4445 2.2 mil.
snow 10066 5.0 mil.
art 14116 7.1 mil.
poster 768 0.4 mil.

Table 1: Listing of Flickr tags used to populate image database.
Using some of the most popular tags [25] from Flickr shown in table 1, it's highly unlikely
that the same page will be selected more than once, especially if the database is being
populated by just some several thousand images. Calculating the risk using the most and
least popular abovementioned tags and requesting 2000 images or four pages of 500
images, there is a 0.03% and 0.5% chance, respectively, in selecting a page more than once.

Once the array of image URI is constructed, a new batch is open, as Drupal calls the
process of creating a new batch job, and immediately processed. The user is then led to a
page with an progress indicating bar that updates progressively as the batch is processed.

With each image URI, the image file at the URI is first copied to the server. An entry in
Drupal's file tracking table is made and lastly a node is created to associate the image to its
image content type exposing it both to the GUI and to the methods used later to select all
images. Using the hook system, the image characterization is calculated right before the
image node is saved (the presave operation) and inserted into the node to be saved.

Currently, the database includes about 11 300 images, or about 1600 images for each of the
seven search tags used as listed in the table above.

5.2 Characterizing Images
When replacing the source image tiles with scaled down images, the tiles and images needs
to somehow be compared. Here, there is a trade off between performance and quality of
selection. On the extreme side of quality, if a tile is compared to full size images, there is

9

the greatest amount of information that can potentially lead to the best matching image,
whatever best is defined, but the amount of work in this process is unrealistic. On the other
extreme, both tile and image can be characterized by a single colour value, as if both were
scaled down to a single pixel (px). Between these extremes, the resolution of the
characterization can be increased and transition between the subset of colour values (or
pixels) can also be approximated by various interpolation methods.

Characterizing images with its average colour is the simplest method. The colour values,
red, green, and blue (RGB), are averaged over all pixels. Implementing an average function
that loops over all pixels in PHP is incredibly inefficient as the pixel data is not directly
exposed to the code. Images are stored as a resource, a special PHP variable that references
an external resource. The I/O to access specific pixel information is not efficient. Instead,
it's faster to resample the image into a one by one pixel space and then retrieve this pixel's
RGB value. This effectively averages the image's colour data.

The image can instead by resampled to larger spaces (e.g. three by three or greater) to better
approximate how the colour is distributed across the image. In this paper, the results use the
average colour method as the results were unexpectedly good given a large enough
database of images and small enough tile size.

The two methods described above to find the average colour are summarized as follows:
one, the image is resampled to a 1 px by 1 px space and the colour of that pixel is returned;
two, the colour data of each pixel of the image is retrieved and the average colour is
manually calculated.

The time to calculate the average colour was measured using both methods and across a
collection of images of varying file size and image size (number of pixels). Linear
regression was applied to the data using the 2nd-order non-linear equation in the form:

z=a1 xa2 x2a3 ya4 y2a5 xy

Equation 1: The 2nd-order non-linear equation used to analyse the relationship between
image and file size and processing time to characterize images.

where z is the processing time (in ms), x is the file size (in kilobytes or kB), and y is the
image size (in megapixels or MP).

Eight images with the following attributes were benchmarked:

File Size (kB) Image Dim (px) Image Size (MP) Time 1 (ms) Time 2 (ms)
24.21 224 by 324 0.08 9.1 ± 0.8 520 ± 50
46.91 353 by 500 0.18 20 ± 3 520 ± 50

176.44 375 by 500 0.19 28 ± 3 580 ± 60
193.57 500 by 333 0.17 28 ± 7 490 ± 50
273.63 500 by 334 0.17 28 ± 2 500 ± 30
304.99 324 by 500 0.16 28 ± 3 500 ± 80

10

339.36 500 by 500 0.25 42 ± 3 740 ± 70
369.14 3920 by 4000 15.68 1500 ± 180 49000 ± 2000

Table 2: Benchmarking results measuring duration of the two characterization methods..
Using the PHP function microtime(), the processing time for the resample method (time 1)
and manual method (time 2) was measured. For time 1, the averaged value is computed
from 5000 independent measurements. For time 2, the value is computed from 50
independent measurements. By visual inspection, the manual computation method is about
1.5 orders of magnitude (101.5≈31.6 times) slower than the resampling method and this
is quite consistent across the range of file and image sizes.

Inspecting the time 1 and 2 data sets, there's a clear positive correlation between file and
image size to the processing time. Yet, the processing time of the respective data sets
depend differently to the file and image size. Time 2 depends more heavily on image size
than time 1, as the manual method is slower in the 3rd case where the image size increases,
but the file size decreases, while the resampling method is relatively unaffected.

Applying the data from the resampling method to equation 1 for linear regression, the
coefficients are:

Figure 1: Visualization of equation 1.

11

a1=0.05
a2=0.0
a3=96.16
a4=−4.17
a5=0.18

5.3 Comparing Characterizations
There are a number of methods to compare the characterizations of the images with the tile.
In this paper, using the average colour characterization, the problem becomes a vector
search issue. The tile has a specific RGB value to match. The problem is to find the image
who's average colour is the closest to the tile's average colour. In RGB space, a number of
metrics can be used to measure the 3D distance between RGB values.

The Euclidean, Manhattan, and Chebyshev metric are three popular distance functions for
vector space with the following definitions, given two vectors p and q, with standard
coordinates pi and qi:

DEuclidean=∑i
 pi−qi

2

DManhattan=∑
i
∣pi−qi∣

DChebyshev=max ∣pi−q i∣

Equation 2: Popular metrics for Euclidean space.
The International Commission on Illumination (CIE, for its French name, Commission
internationale de l'éclairage) defines the colour metric differently, in an attempt to
accurately reflect perceived colour differences. Over the years, CIE has refined this colour
metric called Eab

* or simply Delta E, as the human eye is more sensitive to certain
colours than others. Delta E is a complicated function with numerous square roots,
exponents, and divisions, all of which are expensive math functions.

It also uses a different colour model, lightness, chroma, hue (LCh) and [26] and [27] show
that the conversation between RGB and LCh is also an expensive calculation, involving
trigonometric and piecewise functions. Delta E was not chosen due to the expensive nature
of the involved calculations, but the Euclidean metric was chosen as [28] shows the original
Delta E calculation was a simple Euclidean distance in Lab colour space.

5.4 Searching for Images
When the source image is broken into tiles, each tile must be replaced with an appropriate
image from the database. The speed of this process depends heavily on what algorithm is
used to search through the image database. Searching for images can be abstracted as the
nearest neighbour search or proximity search using the characterization of the image as the
key. The characterization is considered an n-dimensional point in metric space. Given a set
of such points representing all the images in the database, find the closest point in this set to
the characterization of the specific tile.

As discussed previously, the characterization method used in this work is the average
colour of the image represented as a single colour point (3D). Here, the proximity problem
is finding the closest 3D point to the average colour of the tile given a set of 3D points
representing the average colours of all the images in the database.

The early results of the searching for the closest match produced mosaics with highly

12

periodic regions where the original source image had regions of homogeneous colour (e.g.
A large piece of blue sky). To work around this visual problem of periodicity, the selected
image would only need to be a good match to the tile.

Approximate nearest neighbour search algorithms were explored, where the algorithm
returns a close match to the candidate without guarantee that the result is the absolute
closest match. This loosening of the search criteria often yields faster searches. Yet [29]
reported that the Best Bin First solution the approximate nearest neighbour search problem
often yielded the best match, which would not solve the problem with repeating images in
the mosaic.

Instead, the problem was changed to boundary search problem, where all neighbours within
a boundary around the searching point is returned. Between these candidates, one image is
randomly selected as the replacement. Empirically, the distance in RGB space of Otn
was found to be sufficiently small that only similar images were returned and sufficiently
large that, in homogeneous regions of the source image, the visual periodicity is broken up.

The naive approach is a linear search for each tile. [30] shows that the linear search may be
as fast as or even better than the more complicated search methods that partition space,
especially as the dimensionality of the data increases. The time complexity of the linear
search is: O tn where t is the number of tiles and n is the number of images in the
database.

Using the branch and bound methodology, another method is to partition the RGB colour
space. A kd-tree is a binary space partitioning (BSP) tree that recursively bisects space with
planes that are normal to one of the axes (in a cyclical order, i.e. bisect the space with a
plane normal to the red axis first, then the green axis, then the blue axis). The time
complexity of constructing such a tree is O n log2 n and the time complexity of
traversing such a tree is O tn2 /3 [31].

Although using a BSP tree provides substantive performance gains and grows increasingly
better as the image database increases in size, the large tree structure would hinder the
Batch API process as it would need to be stored persistently in the database and
unserialized on each page request. Because of this, the linear search was implemented.

5.5 Colour Correction Technique
Many other mosaic generators modify the images used to replace tiles either by overlaying
a translucent version of the source image over the mosaic or by biasing the colour of the
image replacement to the average colour of the tile.

A colour correction technique was implemented in this generator to experiment with the
performance of the technique and quality of the resulting mosaic. Essentially, the technique
overlays a translucent fill of the average colour of the tile on top of the image replacement
giving it a hue that more closely resembles the tile it is replacing.

This additional process extends the duration of the tessellating process by approximately
15%.

13

Figure 2 shows two 7300-tile mosaics generated from the same source image, one without
and one with colour correction. The aesthetic value of colour correction is arguable and
likely depends on the subjective application or use of the mosaic. Hence, the
appropriateness of using colour correction is beyond the scope of this work.

The remainder of the mosaics are largely not colour corrected as it can be considered a
post-process addition. The generator deals strictly with the tessellation process.

14

Figure 2: (a) is a mosaic without colour correction and (b) is one with colour correction
based on the source image (c). Colour correction enhances the recognition of the
original image and dulls the details within the individual image replacements.

15

(a) (b)

(c)

6. Results
Results were generated throughout the process of refining the work, as described in the
development philosophy. The evolution of results is discussed here along with the
improvements made to the mosaic generator to both increase the quality of generated
mosaics and also scale the generator to deal with a larger image database and larger
mosaics.

6.1 Initial Results
The initial generator implemented most of the designs and algorithms as described in the
previous section, but the results were limited and discouraging.

Figures 3-5 show one of the earliest results
of the generator. Figure 4 is a mosaic that
uses the original images as tiles, just as they
are (i.e. without colour correction) and it's
obvious that the mosaic does not resemble
the source image very well. Among the
problems is the noticeable periodicity of
repeated images over the mosaic and the
inappropriate match of many of the tiles.

Figures 4 and 5 contain 768 25 px by 25 px
tiles creating an 800 px by 600 px mosaic.

These early results were greatly constrained
by an excessively small image database of
about 100 images from which to choose as

tile replacements. Hardly enough images to appropriately construct a mosaic. Still, it's
visually evident that the algorithm is basically functional, as the tiles do respond to the
colour changes throughout the image. Figure 5 confirms this as the colour correction clearly

16

Figure 3: The source image for the
adjacent mosaics (figure 2 and 3).

Figure 4: One of the first mosaics.

Figure 5: The mosaic with colour
corrected tiles.

shows that the average colour of each tile has been appropriately calculated (and the tile
images corrected accordingly).

Figure 6: Another mosaic created by the early algorithm plagued with the same issues as
discussed with figures 1-3.
Figure 6 clearly shows the responsiveness of the basic algorithm to colour of the tiles,
especially around the blue, green, and orange markings on the sign in the source image.
Still, the mosaic suffers mainly due to relatively large tiles (i.e. the image should be
composed of more images) and a relatively small image database.

Figure 7: The mosaic is generated with smaller tiles and an expanded image database.

17

(a) (b)

(a) (b)

Figure 7 is generated with more tiles (1700) and using several hundred images in the
database. The increased database of images significantly improves the selection of images
during the tessellation process as is visually evident. Yet, this mosaic is still challenged with
the repetition of images in areas where the source image is homogeneous in colour. Here,
the algorithm to randomly select an image from a collection of appropriate matches to the
tile has already been implemented. The yellow and pink regions are still highly repetitive as
there is only one or two images that meet the criteria for replacement despite the expanded
database.

6.2 Algorithmic Improvements
As mentioned in the above discussion regarding the early results, the primary challenges
that emerged early in the work was the limited image database and large tile dimensions
relative to that of the mosaic.

Colour correction was briefly implemented to confirm the functionality of the algorithm
(i.e. that it was correctly assessing the colour values of the tiles and images), but ultimately
removed to adhere to using unaltered images in the generation of mosaics.

Figure 8: A pair of mosaics demonstrating the effects of reducing the tile size.
In figure 8, the source image (a) is used to generate two mosaics: one of 825 tiles (b)
contrasted with one of 7500 tiles (c). By visual inspection, it's clear that the reduction in tile
size improves the accuracy of the mosaic.

At this point in the work, there is a distinction between the tile dimension of the source
image and that of the resulting mosaic. The dimensions of the images (a), (b), and (c) are,
respectively: 375 px by 500 px, 750 px by 990 px, and 1500 px by 2000 px. In create (b)
from (a), the source image was broken up into 15 px by 15 px input tiles and the resulting
mosaic was composed of 30 px by 30 px output tiles. Similarly, in creating (c), the input tile
dimension is 5 px by 5 px and the output tile dimension is 20 px by 20 px. Theoretically,
resulting mosaic would be perfectly accurate if the input tile dimension is 1 px by 1 px;
hence, each pixel is represented by an image.

18

(a) (b) (c)

The challenge is to balance the visual closeness of the mosaic to the source image while
maintaining input tile dimensions comparable to the source image dimensions.

It is reasonable to expect that the average colour method is not ideal; it does not capture the
colour dynamics within the image and works best in colour-homogeneous image regions.
Even though it represents homogeneous tiles well from the source image, there is no way to
characterize the dynamics within the images in the database. Therefore, images replacing
the tile may be similar homogeneous, which is a good replacement, but they may also be
highly dynamic and poorly represent the tile in question.

6.3 Implementation Improvements
Although the abstract algorithms did not change very much throughout the work, the
implementation was vastly revised between the first results the final results below, mainly
with respect to caching, memory usage, and how the Batch API was implemented to
minimize the data structures that persisted between each page request.

In generating mosaics, the general heuristic is to avoid loading data as long as possible and
persisting any expensive data (i.e. image resources) for as long as possible once loaded. For
example, in handling the image database, the characterization and URL of all images are
loaded at the start of the tessellation process, but the actual images are not loaded into
memory. When an image has been selected to replace a tile, it is loaded then, if it has not
already been loaded. The image resource is retained through the tessellation process, such
that future selections of this image need not reload the image resource. The approach
increases memory consumption gradually and risks depleting the available memory if there
is no handler to catch the exception preemptively or as it occurs to free up some memory
occupied by image resources. The generator has not yet approached this upper bound yet.

6.4 Final Results
The final iteration of the generator had a database of over 11 000 images imported from
Flickr using the following seven popular tags: landscape, building, portraits, animals, snow,
art, and poster.

Figure 9: A 4300-tile mosaic.

19

20

Figure 10: A 7300-tile mosaic.

Figure 11: A 6700-tile mosaic.

21

7. Work Extensions

7.1 Different Characterization Methods
It is clear the average colour method does not capture colour dynamics within an image
region. Interpolation methods and other more complicated characterizations attempt to
approximate these dynamics. Using these methods greatly increases the computation of the
image characterizations and complicates the way these characterizations can be compared.

A worst case example of the colour dynamic
problem is as illustrated in figure 12 and
described in the following. The tile in the
source image is a solid colour, 33% grey
with the RGB coordinates, (0.33, 0.33,
0.33) where white is (1.0, 1.0, 1.0) and
black is (0.0, 0.0, 0.0). An image that is one-
third red (1.0, 0.0, 0.0), one-third green (0.0,
1.0, 0.0), and one-third blue (0.0, 0.0, 1.0)
would be characterized by an average
colour of exactly 33% grey.

This characterization algorithm would
assume a perfect match between this colourful image and the grey tile. Using the average
colour characterization method, the input tile dimension must be kept small so that these
errors remain relatively minor and do not obstruct the overall look of the mosaic.

7.2 Implement the Standard Colour Difference Metric
As complicated as the CIELAB colour difference equation may be, it more appropriately
compares colours and quantitatively characterizes their difference, taking into account the
varying perception of different colours by the human eye. It also works in the LCh colour
space which separates a colour's lightness, chroma, and hue. Parameterizing colours in this
space allows the similarity metric to be more easily modified. For example, hue similarity
may be more important than similarity in lightness or chroma (i.e. red images are preferred
for red tiles even if they are darker or lighter than the tile).

By operating in the LCh colour space, the colour dimensions are more tangible related to
the perception of colour. It will be difficult to implement this expensive calculation while
suppressing the length of time required to generate mosaics.

7.3 Vastly Increased Image Database
[16] implemented a mosaic generator that could draw from millions of photos. Increasing
the image database by several orders of magnitude would greatly improve the quality of
generated mosaics.

22

(a) (b)
Figure 12: Average colour characterization

does not capture colour dynamics
within the image region.

8. Conclusion
In this work, the process of generating image mosaics was decomposed. A number of
design possibilities were proposed for each component of the generator and some were
benchmarked to inform the decisions made in implementing the various components. A
multi-step method for constructing image mosaics was proposed without using colour
correction or any other means of mosaic post-processing.

Source images were imported from the Internet and a database in the order of ten thousand
images was created. The generator was optimized in the implementation level to generate
mosaics in the order of several thousand tiles in about ten minutes. Platform limitations
became apparent when handling huge mosaics of tens of megapixels with tens of thousands
of tiles. The largest mosaic created by the generator was a 100-thousand-tile mosaic that
was first broken into two pieces for the generator and later merged manually.

The selection of images was fairly basic using average colours to characterize both tiles and
images. This worked fairly well in the case of small tiles. Yet the methods failed to capture
colour dynamics within image regions and this became apparent as the tile size was
increased relative to the mosaic size.

Finally, this paper outlines a web platform and framework from which the generator can
function, leveraging a number of open source and free technologies.

23

9. References
[1] Oxford University Press. (2010, April 08). "mosaic, n. and adj.1" [Online]. Available:

http://dictionary.oed.com/cgi/entry/00316181

[2] Oxford University Press. (2010, April 08). "photomosaic, n." [Online]. Available:
http://dictionary.oed.com/cgi/entry/30004709

[3] J. Francis. (2010, April 08). History of Photo Mosaics. [Online]. Available:
http://www.digitalartform.com/archives/2004/12/history_of_phot.html

[4] Wikipedia. (2010, April 08). Photographic mosaic. [Online]. Available:
http://en.wikipedia.org/wiki/Photographic_mosaic

[5] Iran Chamber Society. (2010, April 08). . [Online]. Available:
http://www.iranchamber.com/art/articles/tile_history1.php

[6] P. Wilkins. (2010, April 08). Pixelize. [Online]. Available: http://lashwhip.com/pixelize.html

[7] R. Silvers. (2010, April 08). Photomosaic. [Online]. Available: http://photomosaic.com/

[8] R. Feinson. (2010, April 08). Roy Feinson. [Online]. Available: http://www.royfeinson.com/

[9] A. Olejnik. (2010, April 08). Mosaic Creator. [Online]. http://www.aolej.com/mosaic

[10] M. Probst. (2010, April 08). Metapixel. [Online]. http://www.complang.tuwien.ac.at/schani/metapixel/

[11] M. Tesser and G. Fornasar. (2010, April 08). imosaic. [Online]. http://www.imosaic.net/

[12] R. Silvers. "Digital composition of a mosaic image," U.S. Patent 6 137 498, October 24, 2000.

[13] P. Kirchgessner. (2010, April 08). The Gimp plug-ins. [Online]. http://www.kirchgessner.net/photo-
mosaic.html

[14] Public Patent Foundation. (2010, April 08). Silvers Photomosaic Patent. [Online].
http://www.pubpat.org/silvers.htm

[15] A. Finkelstein and M. Range, "Image Mosaics," Comp. Sci. Dept., Princeton Univ., Princeton, NJ,
Tech. Rep. TR-574-98, 1998.

[16] D. Pavi´c, U. Ceumern and L. Kobbelt. "GIzMOs: Genuine Image Mosaics with Adaptive Tiling,"
Computer Graphics Forum, vol. 28, no. 8, pp. 2244–2254, 2009. doi: 10.1111/j.1467-
8659.2009.01437.x

[17] Google Press Center. (2010, April 08). Images. [Online].
http://images.google.com/intl/en/press/descriptions.html#images

[18] H. Champ. (2010, April 08). 4,000,000,000. [Online]. http://blog.flickr.net/en/2009/10/12/4000000000/

[19] Wikipedia. (2010, April 08). Agile software development. [Online].
http://en.wikipedia.org/wiki/Agile_software_development

[20] DedaSys. (2010, April 08). Programming Language Popularity. [Online]. http://langpop.com/

[21] TIOBE Software BV. (2010, April 08). TIOBE Programming Community Index for April 2010.
[Online]. http://www.tiobe.com/index.php/content/paperinfo/tpci/

[22] Netcraft. (2010, April 08). April 2010 Web Server Survey. [Online].
http://news.netcraft.com/archives/web_server_survey.html

[23] The Computer Language Benchmarks Game. (2010, April 08). Fastest programming language.
[Online]. http://shootout.alioth.debian.org/fastest-programming-language.php?
calc=chart&gcc=on&gpp=on&java=on&php=on

24

[24] US&V Designs. (2010, April 08). Who is Using Drupal?. [Online]. http://websites.usandv.com/who-is-
using-drupal

[25] Flickr. (2010, April 08). Popular Tags on Flickr. [Online]. http://www.flickr.com/photos/tags/

[26] Wikipedia. (2010, April 08). Lab color space - CIE 1976 (L*, a*, b*) color space (CIELAB) - RGB
and CMYK conversions. [Online].
http://en.wikipedia.org/wiki/Lab_color_space#RGB_and_CMYK_conversions

[27] Wikipedia. (2010, April 08). Colorfulness - Chroma in CIE 1976 L*a*b* and L*u*v* color spaces.
[Online].
http://en.wikipedia.org/wiki/Colorfulness#Chroma_in_CIE_1976_L.2Aa.2Ab.2A_and_L.2Au.2Av.2A
_color_spaces

[28] Wikipedia. (2010, April 08). Color difference - Delta E - CIE76. [Online].
http://en.wikipedia.org/wiki/Color_difference#CIE76

[29] J. Beis, D. G. Lowe, "Shape indexing using approximate nearest-neighbour search in high-dimensional
spaces," Conf. Comp. Vision and Pattern Recognition, Puerto Rico, 1997.

[30] R. Weber, H. Schek, and S. Blott, "A Quantitative Analysis and Performance Study for Similarity-
Search Methods in High-Dimensional Spaces," Proc 24th VLDB Conf., New York, NY, 1998.

[31] Wikipedia. (2010, April 08). kd-tree - Complexity. [Online].
http://en.wikipedia.org/wiki/Kd_tree#Complexity

25

Appendix A. Mosaic Generator Code
The following is the Drupal code for the mosaic generator module.

mosaic.info
; Id
name = Image Mosaic Generator
description = Allows users to generate image mosaics from a gallery of images.
core = 6.x
package = Thesis

mosaic.settings.inc
<?php
// Id

/**
 * @file
 * Defines constants for mosaic generator.
 */

// Content types
define('MOSAIC_TYPE', 'mosaic');
define('IMAGE_TYPE', 'image');

// Field names
define('IMAGE_FIELD', 'field_image');
define('CHAR_FIELD', 'field_char');

// Tiling constants
define('INPUT_TILE_SIZE', 5);
define('OUTPUT_TILE_SIZE', 40);
define('TILE_COLOR_DISTANCE', 2000);
define('COLOUR_CORRECTION', 50);

// Other constants
define('SEARCH_MAX_IMAGES', 500);
define('IMPORT_LIMIT', 10);
define('TESSELATE_LIMIT', 100);
define('QUERY_LIMIT', 20000);

mosaic.module
<?php
// Id

/**
 * @file
 * Allows users to generate image mosaics from a gallery of images.
 */

require_once(drupal_get_path('module', 'mosaic') . '/mosaic.settings.inc');

/**
 * Implementation of hook_perm().
 */
function mosaic_perm() {
 return array('create image mosaics');
}

/**
 * Implementation of hook_menu().
 */
function mosaic_menu() {

26

 $items = array();
 $items['mosaic_generate/%node'] = array(
 'title' => 'Generate a tile composite',
 'page callback' => 'mosaic_generate',
 'page arguments' => array(1),
 'access arguments' => array('create image mosaics'),
 'type' => MENU_CALLBACK,
 'file' => 'mosaic.generate.inc',
);
 $items['admin/mosaic'] = array(
 'title' => 'Mosaic',
 'description' => 'Configure mosaic generator.',
 'position' => 'left',
 'weight' => -99,
 'page callback' => 'system_admin_menu_block_page',
 'access arguments' => array('administer site configuration'),
 'file' => 'system.admin.inc',
 'file path' => drupal_get_path('module', 'system'),
);
 $items['admin/mosaic/import'] = array(
 'title' => 'Import images',
 'description' => 'Create image library from external source.',
 'page callback' => 'drupal_get_form',
 'page arguments' => array('mosaic_import_images'),
 'access arguments' => array('administer site configuration'),
 'type' => MENU_NORMAL_ITEM,
 'file' => 'mosaic.admin.inc',
);
 $items['admin/mosaic/settings'] = array(
 'title' => 'Mosaic settings',
 'description' => 'Change mosaic generator settings.',
 'page callback' => 'drupal_get_form',
 'page arguments' => array('mosaic_admin_settings'),
 'access arguments' => array('administer site configuration'),
 'type' => MENU_NORMAL_ITEM,
 'file' => 'mosaic.admin.inc',
);
 return $items;
}

/**
 * Implementation of hook_nodeapi().
 */
function mosaic_nodeapi(&$node, $op, $a3 = NULL, $a4 = NULL) {
 if(strcmp($node->type, IMAGE_TYPE) == 0) {
 switch ($op) {
 case 'view':
 if($a4 === true) {
 drupal_add_css(drupal_get_path('module', 'mosaic') . '/mosaic-char.css');

 $node->content['mosaic_link'] = array(
 '#value' => l(t('Create a mosaic from this image'), 'mosaic_generate/'
. $node->nid, array('attributes' => array('class' => 'mosaic-link'))),
 '#weight' => -10,
);
 }
 break;
 case 'presave':
 if (!is_null($node->field_image[0]['fid'])){
 $color = _mosaic_characterize_image(imageapi_image_open($node-
>field_image[0]['filepath']));
 unset($color['alpha']);
 $node->field_char[0]['value'] = serialize($color);
 }
 break;
 }
 }
}

27

/**
 * Helper function to mosaic_nodeapi(). Resamples image to a 1 px by 1 px space
 * and returns the average colour.
 */
function _mosaic_characterize_image($image) {
 imageapi_image_resize($image, 1, 1);
 return imagecolorsforindex($image->resource, imagecolorat($image->resource, 0,
0));
}

mosaic.admin.inc
<?php
// Id

/**
 * @file
 * Allows users to generate image mosaics from a gallery of images.
 */

require_once(drupal_get_path('module', 'mosaic') . '/mosaic.settings.inc');

/**
 * Define form to import and create image library.
 */
function mosaic_import_images() {
 $form = array();
 $form['tags'] = array(
 '#type' => 'textfield',
 '#title' => t('Search terms'),
 '#default_value' => 'landscape, building, portraits, animals, snow, art, poster
',
 '#size' => 60,
 '#maxlength' => 64,
 '#description' => t('These terms will be used to search for images.'),
);
 $form['num'] = array(
 '#type' => 'textfield',
 '#title' => t('Number of images per term'),
 '#default_value' => SEARCH_MAX_IMAGES,
 '#size' => 60,
 '#maxlength' => 64,
);
 $form['submit'] = array(
 '#type' => 'submit',
 '#value' => t('Import'),
);
 return $form;
}

/**
 * Submission hook to process form submitted from mosaic_import_images().
 *
 * Initiates batch process to import images.
 */
function mosaic_import_images_submit($form, &$form_state) {
 $num = intval($form_state['values']['num']);
 $tags = explode(', ', $form_state['values']['tags']);

 $urls = array();
 if ($num >= SEARCH_MAX_IMAGES) {
 foreach ($tags as $tag) {
 $tag_count[_mosaic_image_search_pages($tag)] = $tag;
 }
 for (; $num >= SEARCH_MAX_IMAGES; $num -= SEARCH_MAX_IMAGES){
 foreach ($tag_count as $pages => $tag) {
 $urls = array_merge($urls, _mosaic_image_search($tag, mt_rand(1, $pages)));

28

 }
 $page++;
 }
 }
 if ($num > 0) {
 foreach ($tags as $tag) {
 $pages = _mosaic_image_search_pages($tag, $num);
 $urls = array_merge($urls, _mosaic_image_search($tag, mt_rand(1, $pages), $nu
m));
 }
 }

 $batch = array(
 'operations' => array(array('_mosaic_import_images_batch', array($urls))),
 'finished' => '_mosaic_import_images_batch_finished',
 'title' => t('Importing images'),
 'init_message' => t('The image import process is beginning.'),
 'progress_message' => t('Importation in progress...'),
 'error_message' => t('The importation process encountered an error.'),
 'file' => drupal_get_path('module', 'mosaic') . '/mosaic.admin.inc',
);
 batch_set($batch);
 // batch_process() not needed here because this is a form submit handler;
 // the form API will detect the batch and call batch_process() automatically.
}

/**
 * Define form to adjust the settings.
 */
function mosaic_admin_settings() {
 $form = array();
 return $form;
}

/**
 * Displays completion message at the end of the importation process started by
 * mosaic_import_images_batch().
 */
function _mosaic_import_images_batch_finished($success, $results, $operations) {
 if ($success) {
 $message = format_plural($results['images'], 'One image imported.', '@count ima
ges imported.');
 } else {
 $error_operation = reset($operations);
 $message = t('An error occurred while processing %error_operation with argument
s: @arguments', array('%error_operation' => $error_operation[0], '@arguments' => pr
int_r($error_operation[1], TRUE)));
 watchdog('mymodule', 'An error occurred while processing %error_operation with
arguments: @arguments', array('%error_operation' => $error_operation[0], '@argument
s' => print_r($error_operation[1], TRUE)), WATCHDOG_ERROR);
 }
 drupal_set_message($message);
 drupal_goto();
}

/**
 * Imports IMPORT_LIMIT images as part of the batch process started by
 * mosaic_import_images_batch().
 */
function _mosaic_import_images_batch($urls = array(), &$context) {
 if (!isset($context['sandbox']['progress'])) {
 $context['sandbox']['progress'] = 0;
 $context['sandbox']['max'] = count($urls);
 $context['message'] = t('Now importing image %progress of %max', array('%progre
ss' => $context['sandbox']['progress'], '%max' => $context['sandbox']['max']));
 $context['finished'] = 0;
 } else {

29

 $limit = IMPORT_LIMIT;
 $counter = 0;
 while ($counter != $limit && $context['sandbox']['progress'] != $contex
t['sandbox']['max']) {
 _mosaic_import_images($urls[$context['sandbox']['progress']]);

 $counter++;
 $context['sandbox']['progress']++;
 $context['message'] = t('Now importing image %progress of %max', array('%prog
ress' => $context['sandbox']['progress'], '%max' => $context['sandbox']['max']));
 $context['results']['images'] = $context['sandbox']['progress'];
 }

 if ($context['sandbox']['progress'] != $context['sandbox']['max']) {
 $context['finished'] = $context['sandbox']['progress'] / $context['sandbox']
['max'];
 }
 }
}

/**
 * Imports a single image to Drupal given a source URI.
 */
function _mosaic_import_images($src) {
 global $user;
 $uid = $user->uid;

 $node = new stdClass();
 $node->type = 'image';
 $node->uid = $uid;
 $node->status = 1;

 $dst = file_directory_path() . '/' . md5($src) . '.jpg';
 $result = copy($src, $dst);
 if($result === false) {
 return false;
 }

 // Create a Drupal file record for the new image.
 $file = new stdClass();
 $file->filename = basename($dst);
 $file->filepath = $dst;
 $file->filemime = file_get_mimetype($dst);
 $file->filesize = filesize($dst);
 $file->uid = $uid;
 $file->status = FILE_STATUS_PERMANENT;
 $file->timestamp = time();
 drupal_write_record('files', $file);
 $file->fid = db_result(db_query("SELECT fid FROM {files} WHERE filepath = '%s'",
$file->filepath));

 // Insert image into node.
 $node->field_image = array(array(
 'fid' => $file->fid,
 'list' => 1,
 'uid' => $uid,
 'filename' => $file->filename,
 'filepath' => $file->filepath,
 'filemime' => $file->filemime,
 'filesize' => $file->filesize,
 'status' => $file->status,
 'timestamp' => $file->timestamp
));
 $node->field_char = array(array('value' => ''));
 node_save($node);

 return true;
}

30

/**
 * Returns the number of pages of photos in Flickr for a specific search tag.
 */
function _mosaic_image_search_pages($tag, $per_page = SEARCH_MAX_IMAGES){
 $results = _mosaic_image_search_flickr($tag, 1, $per_page);
 return $results['photos']['pages'];
}

/**
 * Returns an array of URIs to Flickr images given a search tag.
 */
function _mosaic_image_search($tag, $page = 1, $per_page = SEARCH_MAX_IMAGES){
 $results = _mosaic_image_search_flickr($tag, $page, $per_page);

 // Ensure request was successful.
 if ($results['stat'] !== 'ok'){
 return false;
 }

 $photos = $results['photos']['photo'];
 $urls = array();
 foreach($photos as $photo){
 $farm = $photo['farm'];
 $server = $photo['server'];
 $id = $photo['id'];
 $secret = $photo['secret'];
 $urls[] = "http://farm$farm.static.flickr.com/$server/${id}_$secret.jpg";
 }
 return $urls;
}

/**
 * Returns an array of Flickr results given a search tag.
 */
function _mosaic_image_search_flickr($tag, $page = 1, $per_page = SEARCH_MAX_IMAGES
){
 $params = array(
 'api_key' => '5c0b0b7235116793a29e8bbd1f516f92',
 'method' => 'flickr.photos.search',
 'tags' => $tag,
 'format' => 'php_serial',
 'per_page' => $per_page,
 'page' => $page
);
 $encoded_params = array();
 foreach ($params as $k => $v){
 $encoded_params[] = urlencode($k).'='.urlencode($v);
 }

 // Call the API and decode the response.
 $url = "http://api.flickr.com/services/rest/?".implode('&', $encoded_params);
 $response = file_get_contents($url);
 $results = unserialize($response);

 return $results;
}

mosaic.generate.inc
<?php
// $Id

/*
 * Generate a tile composite from a given node object.
 */
function mosaic_generate($node) {
 // Check node is of content type that can be used as tile composite source.

31

 if (strcmp($node->type, IMAGE_TYPE) != 0) {
 drupal_not_found();
 return;
 }

 // Create tile composite image.
 $image_path = $node->field_image[0]['filepath'];
 list($image, $tiles) = _mosaic_generate_ops($image_path);

 // Save source's nid.
 variable_set('mosaic_generate_nid', $node->nid);

 $batch = array(
 'operations' => array(array('_mosaic_generate_batch', array($image, $tiles))),
 'finished' => '_mosaic_generate_batch_finished',
 'title' => t('Tesselating mosaic tiles'),
 'init_message' => t('The tesselation process is beginning.'),
 'progress_message' => t('Tesselation in progress...'),
 'error_message' => t('The tesselation process encountered an error.'),
 'file' => drupal_get_path('module', 'mosaic') . '/mosaic.generate.inc',
);
 batch_set($batch);
 batch_process('');
}

function _mosaic_generate_batch_finished($success, $results, $operations) {
 if ($success) {
 // Save new mosaic image.
 global $user;
 $uid = $user->uid;

 // Create a Drupal file record for the mosaic image.
 $file_drupal_path = $results['image']->source;
 $mime = 'image/jpeg';

 $file = new stdClass();
 $file->filename = basename($file_drupal_path);
 $file->filepath = $file_drupal_path;
 $file->filemime = $mime;
 $file->filesize = filesize($file_drupal_path);

 $file->uid = $uid;
 $file->status = FILE_STATUS_PERMANENT;
 $file->timestamp = time();
 drupal_write_record('files', $file);
 $file->fid = db_result(db_query("SELECT fid FROM {files} WHERE filepath = '%s'
", $file->filepath));

 // Save the mosaic image as a new node.
 $node_new = new stdClass();
 $node_new->type = MOSAIC_TYPE;
 $node_new->uid = $uid;
 $node_new->status = 1;
 $node_new->field_image = array(array(
 'fid' => $file->fid,
 'title' => basename($file->filename),
 'filename' => $file->filename,
 'filepath' => $file->filepath,
 'filesize' => $file->filesize,
 'mimetype' => $mime,
 'description' => basename($file->filename),
 'list' => 1,
));
 $node_new->field_source = array(array('nid' => variable_ge
t('mosaic_generate_nid', 0)));
 node_save($node_new);

 // Clear source's nid.

32

 variable_del('mosaic_generate_nid');

 // Set success message.
 $message = format_plural($results['count'], 'One tile tesselated.', '@count til
es tesselated.');
 $seconds = intval($results['time']) / 1000;
 $min = str_pad(intval($seconds / 60), 2, '0', STR_PAD_LEFT);
 $sec = str_pad($seconds % 60, 2, '0', STR_PAD_LEFT);
 $timer = t('Tesselation took @min:@sec.', array('@min' => $min, '@sec' => $sec)
);
 drupal_set_message($message);
 drupal_set_message($timer);
 drupal_set_message($results['time']);

 // Go to the new tile composite node.
 drupal_goto('node/' . $node_new->nid);
 } else {
 $error_operation = reset($operations);
 $message = t('An error occurred while processing %error_operation with argument
s: @arguments', array('%error_operation' => $error_operation[0], '@arguments' => pr
int_r($error_operation[1], TRUE)));
 watchdog('mymodule', 'An error occurred while processing %error_operation with
arguments: @arguments', array('%error_operation' => $error_operation[0], '@argument
s' => print_r($error_operation[1], TRUE)), WATCHDOG_ERROR);
 drupal_set_message($message);
 }
}

function _mosaic_generate_batch($image, $tiles, &$context) {
 if (!isset($context['sandbox']['progress'])) {
 $results = array();
 $image = imageapi_image_open($image->source);
 $results['num_width'] = intval($image->info['width'] / INPUT_TILE_SIZE);
 $results['num_height'] = intval($image->info['height'] / INPUT_TILE_SIZE);
 $results['width_counter'] = 0;
 $results['input_width'] = 0;
 $results['input_height'] = 0;
 $results['output_width'] = 0;
 $results['output_height'] = 0;
 $results['image'] = clone $image;
 $results['image']->resource = imagecreatetruecolor($results['num_width'] * OUTP
UT_TILE_SIZE, $results['num_height'] * OUTPUT_TILE_SIZE);
 $results['image']->source = file_directory_path() . '/' . md5(mt_rand()) . '.jp
g';
 imageapi_image_close($results['image']);
 $results['time'] = 0;

 $context['sandbox']['progress'] = 0;
 $context['sandbox']['max'] = $results['num_width'] * $results['num_height'];
 $context['message'] = t('Now tesselating tile %progress of %max', array('%progr
ess' => $context['sandbox']['progress'], '%max' => $context['sandbox']['max']));
 $context['results'] = $results;
 $context['finished'] = 0;
 } else {
 $results = $context['results'];
 $image = imageapi_image_open($image->source);
 $results['image'] = imageapi_image_open($results['image']->source);
 $limit = TESSELATE_LIMIT;
 $limit_counter = 0;
 $tile_avg_color_res = imageapi_gd_create_tmp($image, 1, 1);
 $tile_composition_res = $results['image']->resource;
 timer_start('mosaic_generate');
 while ($limit_counter != $limit && $context['sandbox']['progress'] != $contex
t['sandbox']['max']) {
 _mosaic_generate($image, $tiles, $results, $tile_avg_color_res, $tile_composi
tion_res);

 $limit_counter++;

33

 $results['width_counter']++;

 if($results['width_counter'] == $results['num_width']) {
 $results['width_counter'] = 0;
 $results['input_width'] = 0;
 $results['output_width'] = 0;

 $results['input_height'] += INPUT_TILE_SIZE;
 $results['output_height'] += OUTPUT_TILE_SIZE;
 } else {
 $results['input_width'] += INPUT_TILE_SIZE;
 $results['output_width'] += OUTPUT_TILE_SIZE;
 }

 $context['sandbox']['progress']++;
 $context['message'] = t('Now tesselating tile %progress of %max', array('%pro
gress' => $context['sandbox']['progress'], '%max' => $context['sandbox']['max']));
 $results['count'] = $context['sandbox']['progress'];
 }
 $timer = timer_stop('mosaic_generate');
 $results['time'] += $timer['time'];
 $results['image']->resource = $tile_composition_res;
 imageapi_image_close($results['image']);
 $context['results'] = $results;

 if ($context['sandbox']['progress'] != $context['sandbox']['max']) {
 $context['finished'] = $context['sandbox']['progress'] / $context['sandbox']
['max'];
 }
 }
}

function _mosaic_generate($image, $tiles, $results, $tile_avg_color_res, &$tile_com
position_res) {
 $num_width = $results['num_width'];
 $num_height = $results['num_height'];

 $input_width = $results['input_width'];
 $input_height = $results['input_height'];
 $output_width = $results['output_width'];
 $output_height = $results['output_height'];

 imagecopyresampled($tile_avg_color_res, $image->resource, 0, 0, $input_width, $in
put_height, 1, 1, INPUT_TILE_SIZE, INPUT_TILE_SIZE);
 $color = imagecolorsforindex($tile_avg_color_res, imagecolorat($tile_avg_color_re
s, 0, 0));
 $tile_key = _mosaic_generate_select_tile($color, $tiles);

 $tile_image = $tiles[$tile_key]['image'];
 if(is_null($tile_image)) {
 $tiles[$tile_key]['image'] = imageapi_image_open($tiles[$tile_key]['path']);
 imageapi_image_resize($tiles[$tile_key]['image'], OUTPUT_TILE_SIZE, OUTPUT_TILE
_SIZE);
 $tile_image = $tiles[$tile_key]['image'];
 }
 $tile_info = $tile_image->info;

 $tilecopy = imagecreatetruecolor(OUTPUT_TILE_SIZE, OUTPUT_TILE_SIZE);
 imagecopy($tilecopy, $tile_image->resource, 0, 0, 0, 0, OUTPUT_TILE_SIZE, OUTPUT_
TILE_SIZE);

 //$masked = imagecreatetruecolor(OUTPUT_TILE_SIZE, OUTPUT_TILE_SIZE);
 //imagefill($masked, 0, 0, imagecolorallocate($masked, $color['red'], $color['gre
en'], $color['blue']));
 //imagecopymerge($tilecopy, $masked, 0, 0, 0, 0, OUTPUT_TILE_SIZE, OUTPUT_TILE_SI
ZE, COLOUR_CORRECTION);

 imagecopy($tile_composition_res, $tilecopy, $output_width, $output_height, 0, 0,

34

OUTPUT_TILE_SIZE, OUTPUT_TILE_SIZE);

 return $tile_composition_res;
}

/**
 * Execute tiling algorithm based on source image.
 */
function _mosaic_generate_ops($image_path) {
 // Load collection of tiles.
 $tiles = array();
 $nodes = db_query("SELECT nid, vid, type FROM {node} WHERE type = '%s' LIMIT %d",
'image', QUERY_LIMIT);
 $node = db_fetch_object($nodes);
 while ($node = db_fetch_object($nodes)) {
 content_load($node);
 $tile = unserialize($node->field_char[0]['value']);
 unset($tile['alpha']);
 $tile['path'] = $node->field_image[0]['filepath'];
 $tiles[] = $tile;
 }

 usort($tile, '_mosaic_generate_ops_sort_tiles');

 // Calculate image variables.
 $image = imageapi_image_open($image_path);
 $num_width = (int) $image->info['width'] / INPUT_TILE_SIZE;
 $num_height = (int) $image->info['height'] / INPUT_TILE_SIZE;

 return array($image, $tiles);
}

function _mosaic_generate_ops_sort_tiles($tile1, $tile2) {
 return (($tile1['red'] == $tile2['red']) ? 0 : ($tile1['red'] < $tile2['red']) ?
-1 : 1);
}

/**
 * Select tile with closest average color.
 */
function _mosaic_generate_select_tile($color, $tiles) {
 $tiles_close = array();
 $tile_closest = NULL;
 $tile_closest_distance = PHP_INT_MAX;
 foreach ($tiles as $key => $tile) {
 $tile_distance = pow($tile['red'] - $color['red'], 2) +
 pow($tile['green'] - $color['green'], 2) +
 pow($tile['blue'] - $color['blue'], 2);
 if ($tile_distance < $tile_closest_distance) {
 $tile_closest = $key;
 $tile_closest_distance = $tile_distance;
 }
 if ($tile_distance < TILE_COLOR_DISTANCE) {
 $tiles_close[] = $key;
 }
 }
 if (empty($tiles_close)) {
 return $tile_closest;
 } else {
 return $tiles_close[array_rand($tiles_close)];
 }
}

35

	1. Introduction
	1.1 Objective

	2. Related Work
	3. Problem Specification
	4. Application Framework
	4.1 Development Philosophy
	4.2 Programming Language Prevalence
	4.3 Analysis of Programming Language and Framework
	4.4 Drupal Structure

	5. Process Component Design
	5.1 Image Database
	5.2 Characterizing Images
	5.3 Comparing Characterizations
	5.4 Searching for Images
	5.5 Colour Correction Technique

	6. Results
	6.1 Initial Results
	6.2 Algorithmic Improvements
	6.3 Implementation Improvements
	6.4 Final Results

	7. Work Extensions
	7.1 Different Characterization Methods
	7.2 Implement the Standard Colour Difference Metric
	7.3 Vastly Increased Image Database

	8. Conclusion
	9. References
	Appendix A. Mosaic Generator Code

